Vibraimage statistical analysis software

VibraStat

Manual

ELSYS Corp.
WWW.PSYMAKER.RU

Saint-Petersburg
2012
CONTENT

1. Basic applications ... 3
2. Processing data ... 3
3. Operating procedure ... 8
4. Program results ... 9
5. Analysis results ... 14
6. License .. 16
1. Basic applications

The TPStat.exe program is intended for statistical processing of VibraImage program results and increase the accuracy of person or people group psychophysiological status measurement based on vibraimage technology.

Program application goal is finding of statistically proved differences in vibraimage parameters between two groups of measurements and visualization of research results. Statistical significant difference presence in vibraimage parameters means biological, psychological or physiological changes, taken place for corresponding groups. The program applies in medicine, psychology, psychophysiology, biology, sociology, sports, and various scientific researches where necessary to reliable defining psychophysiological status of the person.

2. Processing data

The initial data for the program are the ***_measurement.xml files which are created by VibraImage program. The program analyzing parameters changes between two groups of comparison. For each group of comparison («Group 1» and «Group 2») it is necessary to create the catalogue on a disk in which folders or files with the parameters received at measurement in an M mode of VibraImage program are copied. Folders of groups on a disk are sorted and numbered by alphabetically.

Statistical processing is based on the analysis of the M (vibraimage parameter expected value (mean)), the S (vibraimage parameter standard deviation) and variability V (V=S/M) for the following psychophysiological parameters of the person measured in M mode by VibraImage PRO program:

T1 – Aggression parameter (P7);
T2 – Stress parameter (P6);
T3 – Tension/Anxiety parameter (F5X);
T4 – Suspect parameter (P19);
T5 – Balance parameter (P16);
T6 – Charm parameter (P17);
T7 – Energy parameter (P8);
T8 – Self regulation parameter (P18);
T9 – Inhibition parameter (F6);
T10 – Neuroticism parameter (F9).
Calculation of T1-T10 parameters

T1 Aggression (P7);

T1 parameter is determined by the frequency histogram and represents the maximum allocation of the frequency and SD vibration frequency of the human face. The higher value of the maximum distribution and higher SD value gives the greater value of the parameter T1.

\[T1 = \frac{F_m + 4 \sum \frac{1}{n} (F_i - \overline{F})^2}{2Fin} \]

- \(F_m \) – maximum density on frequency distribution histogram;
- \(F_i \) – number of accounts with i frequency on frequency distribution histogram, captured from N frames;
- \(Fin \) – input frequency of vibraimage processing;
- \(n \) – number of frequency accounts.

T2 – Stress (P6);

T2 parameter is determined by degree of the external vibraimage (vibra-aura) asymmetry, means asymmetry of micromovements from the left and right parts of the person’s head. The great difference in amplitude and frequency movements for the left and right parts of the face (head) characterizes the increased T2 parameter level.

\[T2 = \frac{\sum_{1}^{n} \left(\frac{|A^i_L - A^i_R|}{A^i_{\text{max}}} + \frac{|F^i_L - F^i_R|}{F^i_{\text{max}}} \right)}{2n} \]

- \(A^i_L \) – sum amplitude from i-line of the left frame part;
- \(A^i_R \) – sum amplitude from i-line of the right frame part;
- \(A^i_{\text{max}} \) – maximum value between \(A^i_L \) and \(A^i_R \);
- \(F^i_L \) – maximum frequency from i-line of left frame part;
- \(F^i_R \) – maximum frequency from i-line of right frame part;
- \(F^i_{\text{max}} \) – maximum value between \(F^i_L \) and \(F^i_R \);
- \(n \) – line number of object.
T3 – Tension/Anxiety (F5X);

T3 parameter is determined by the relation of high-frequency part of a range of vibrations to the general power in a range of micromovements frequency for human head. High value of high-frequency vibrations density characterizes high value of the T3 parameter.

\[T3 = \frac{\sum_{f_{\text{max}}} P_i(f)}{\sum_{f_{\text{max}}} P_i(f)} \]

\(P_i(f) \) – spectrum power of vibraimage frequency distribution;
\(f_{\text{max}} \) – maximum frequency of vibraimage spectrum distribution.

T4 – Suspect (P19);

T4 parameter is determined as the sum average of the first three conditionally negative emotions (T1, T2, T3) and characterizes the general level of conditionally negative emotions in a person status.

\[T4 = \frac{T1 + T2 + T3}{3} \]

T5 – Balance (P16);

T5 parameter is determined by the frequency histogram and characterizes the level of similarity of the current frequency histogram to the Gaussian distribution law. The high level of frequency histogram similarity to the normal law is characterized by a high level of balance, and significant deviation from the Gaussian distribution is characterized by a low level of the parameter T5.

\[T5 = \sum \left[y(x) \right] \frac{K - y'(x)}{\sum y'(x)} \]

K- norming coefficient of frequency distribution

\[K = \frac{\sum y'(x)}{\sum y(x)} \]

\[y' = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-M)^2}{2\sigma^2}} \]

\(y' \) – density of normal distribution
T6 – Charm (P17);

T6 parameter is determined by the symmetry (left-right) of the head and face micromovements, the maximum symmetry of movements (including frequency and amplitude) represents a high level of charm T6.

\[
T6 = \sum \frac{|W_{li} - W_{ri}|}{\text{max}(W_{li}, W_{ri})} N + \sum \frac{|C_{li} - C_{ri}|}{255}
\]

|W_{li} - W_{ri}| - average values amplitude difference from left and right side for every vibraimage line;

|C_{li} - C_{ri}| - maximum values frequency difference from left and right side for every vibraimage line.

T7 – Energy (P8);

T7 parameter is determined by the frequency histogram and characterizes the difference of the maximum density of the vibration frequency and vibration frequency SD for the face and human head. The higher value of the maximum density and lower SD or variation of vibration gives the higher value of energy T7.

\[
T7 = \frac{M - \sigma}{Fps}
\]

M – value of maximum density on frequency histogram;
C – standard deviation calculated on frequency histogram distribution;
Fps – maximum vibraimage input frequency.

T8 – Selfregulation (P18);

T8 parameter is determined as the sum average for conditionally positive emotions (T5, T6) and characterizes the general level of conditionally positive person emotions at the measurement time.

\[
T8 = \frac{T5 + T6}{2}
\]

T9 – Inhibition (F6);

T9 parameter has a real physical dimension (time in seconds) and characterizes the minimum time of the person reaction for the shown event (the stimulus). The value of the parameter T1 = 0.1 means that the reaction time is 0.1 s. The greater the reaction time corresponds to a higher level of inhibition.
T9 = Tm(F1)
T9 calculates as average period for F1 parameter, capture for frames number setting F6N.

T10 – Neuroticism (F9).

T10 parameter characterizes the SD measured value of the inhibition level (T9) at the measurement time (default 60 seconds). High level for inhibition SD of psychophysiological state characterized by instability and indicates high level of neuroticism T10.

\[T10 = 10 \sigma_{T9} \]

\(\sigma_{T9} \) – standard deviation (SD) of T9 parameter.
3. **Operating procedure**

2. Copy file stat.xls and file TPStat.exe in a NEW directory on the hard disk where you will do processing of results. For example, named this directory TEST.

3. On the said directory (TEST) computer create 2 catalogues. Catalogues are sorted and numbered on a disk by alphabetically. The first catalogue is intended for initial measurements of patients (group 1), the second - for the next measurements of parameters (group 2). As a result of program work the comparison of parameters of « groups 1 » and « groups 2 » patients will be made. The user can choose the name of catalogues any way, for example, the first catalogue it is possible to name Norma, the second - Pathology or, for example, Pleasure and Stress, depending on spent experiments.

4. In the specified catalogues copy subcatalogues with results of parameters measurements of separate people, having shared them on corresponding groups or simply results of M measurements of vibraimage program.

5. Run TPStat.exe.

6. As a result of the program work in a stat.xls file will be generated results of parameters comparison of two groups of people.
4. Program results

Results of program operation are formed in a stat.xls file.

Note, viewing of a stat.xls file is made by program Microsoft Excel from **not Russified** Microsoft Office package.

The file contains the following sheets:

Sheet User - contains the following information:

- GR - the name of two catalogues (two groups)
- User - a name of the patient
- BD - date of a birth
- SD - date of creation of a patient folder
- File - a name of a ***_measurement.xml file with results of measurements
- Path - a path to results ***_measurement.xml file

M sheet - is resulted calculation of M (the center of weights of frequency distribution) for all parameters T1-T10. The number of lines in the table corresponds to number of ***_measurement.xml files found in subdirectories «Groups 1» and «Groups 2». If parameter Pass=1 than the selected table line concerns to Group 1. If Pass=0 - to Group 2.

S Sheet - is resulted calculation of \(\sigma \), S (root-mean-square deviation of frequency distribution) for all parameters T1-T10. The number of lines in the table corresponds to number of ***_measurement.xml files found in subdirectories «Groups 1» and «Groups 2». If parameter Pass=1 than the selected table line concerns to Group 1. If Pass=0 - to Group 2.

Fig. 1. M Sheet

<table>
<thead>
<tr>
<th>GR</th>
<th>User</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>Native</td>
<td>31</td>
<td>31.2</td>
<td>31.3</td>
<td>31.2</td>
<td>31.5</td>
<td>31.1</td>
<td>31.2</td>
<td>31.0</td>
<td>31.2</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>User2</td>
<td>Native</td>
<td>41</td>
<td>33.8</td>
<td>35.3</td>
<td>35.4</td>
<td>35.6</td>
<td>35.5</td>
<td>35.4</td>
<td>35.3</td>
<td>35.4</td>
<td>35.6</td>
<td>1</td>
</tr>
<tr>
<td>Native</td>
<td>Национальный</td>
<td>41</td>
<td>46</td>
<td>45</td>
<td>44.3</td>
<td>44.4</td>
<td>44.5</td>
<td>44.3</td>
<td>44.3</td>
<td>44.4</td>
<td>44.5</td>
<td>1</td>
</tr>
<tr>
<td>Native</td>
<td>Национальный</td>
<td>31</td>
<td>31.2</td>
<td>31.3</td>
<td>31.2</td>
<td>31.5</td>
<td>31.1</td>
<td>31.2</td>
<td>31.0</td>
<td>31.2</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>Native</td>
<td>Массовая</td>
<td>52.1</td>
<td>52.8</td>
<td>52.1</td>
<td>51.8</td>
<td>51.7</td>
<td>51.6</td>
<td>51.7</td>
<td>51.8</td>
<td>52.1</td>
<td>52.8</td>
<td>1</td>
</tr>
<tr>
<td>Native</td>
<td>Массовая</td>
<td>52.1</td>
<td>52.8</td>
<td>52.1</td>
<td>51.8</td>
<td>51.7</td>
<td>51.6</td>
<td>51.7</td>
<td>51.8</td>
<td>52.1</td>
<td>52.8</td>
<td>1</td>
</tr>
<tr>
<td>Native</td>
<td>Группа 3</td>
<td>41</td>
<td>21</td>
<td>21.3</td>
<td>21.2</td>
<td>21.3</td>
<td>21.2</td>
<td>21.3</td>
<td>21.2</td>
<td>21.3</td>
<td>21.2</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 2. S Sheet

<table>
<thead>
<tr>
<th>GR</th>
<th>User</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>Native</td>
<td>40.03</td>
<td>2.932</td>
<td>2.789</td>
<td>2.523</td>
<td>2.357</td>
<td>2.281</td>
<td>2.205</td>
<td>2.13</td>
<td>2.055</td>
<td>1.988</td>
<td>0.05</td>
</tr>
<tr>
<td>Native</td>
<td>Национальный</td>
<td>3.795</td>
<td>3.429</td>
<td>6.054</td>
<td>2.904</td>
<td>2.904</td>
<td>2.904</td>
<td>2.904</td>
<td>2.904</td>
<td>2.904</td>
<td>2.904</td>
<td>3</td>
</tr>
<tr>
<td>Native</td>
<td>Массовая</td>
<td>17.287</td>
<td>1.86</td>
<td>3.463</td>
<td>12.267</td>
<td>9.042</td>
<td>7.428</td>
<td>2.944</td>
<td>2.47</td>
<td>1.179</td>
<td>2.375</td>
<td>0</td>
</tr>
<tr>
<td>Native</td>
<td>Группа 3</td>
<td>2.331</td>
<td>0.745</td>
<td>8.94</td>
<td>1.976</td>
<td>3.218</td>
<td>2.663</td>
<td>2.19</td>
<td>2.28</td>
<td>3.356</td>
<td>8.411</td>
<td>0</td>
</tr>
</tbody>
</table>
V Sheet - is resulted calculation of variability \((V = \sigma / M)\) or the same \(V = (S/M)\) for all parameters \(T1\)-\(T10\). The number of lines in the table corresponds to number of ***_measurement.xml files found in subdirectories «Groups 1» and «Groups 2». If parameter Pass=1 than the selected table line concerns to Group 1. If Pass=0 - to Group 2.

<table>
<thead>
<tr>
<th>gr</th>
<th>user</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSheet</td>
<td>Average</td>
<td>15.6</td>
<td>8.7</td>
<td>20.6</td>
<td>0</td>
<td>4.4</td>
<td>7.6</td>
<td>10.3</td>
<td>6</td>
<td>16.1</td>
<td>18.7</td>
<td>1</td>
</tr>
<tr>
<td>VSheet</td>
<td>Average</td>
<td>15.8</td>
<td>9</td>
<td>71.2</td>
<td>13.6</td>
<td>20.9</td>
<td>3.5</td>
<td>24.7</td>
<td>18.2</td>
<td>36.8</td>
<td>27.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 3. V Sheet

Stat Sheet - the generalized statistics for parameters of \(M, \sigma, V\) is resulted. If parameter Pass=1 the given parameter \(T_i\) takes part in calculations. If parameter Pass=0 parameter \(T_i\) is excluded from calculations.

<table>
<thead>
<tr>
<th>gr</th>
<th>M Avg</th>
<th>S1 Avg</th>
<th>V Avg</th>
<th>N1 Avg</th>
<th>N2 Avg</th>
<th>V1 Avg</th>
<th>Th M</th>
<th>Th S</th>
<th>Th F</th>
<th>M</th>
<th>S</th>
<th>V</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>47.5</td>
<td>7.529</td>
<td>12.15</td>
<td>69.63</td>
<td>5.894</td>
<td>18.688</td>
<td>64.76</td>
<td>6.413</td>
<td>15.4995</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>27.28</td>
<td>2.465</td>
<td>8.02</td>
<td>33.68</td>
<td>2.424</td>
<td>8.8992</td>
<td>36.458</td>
<td>2.448</td>
<td>7.6201</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>26.28</td>
<td>8.38</td>
<td>48.0</td>
<td>39.32</td>
<td>7.002</td>
<td>17.526</td>
<td>39.286</td>
<td>7.221</td>
<td>81.7139</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>31.58</td>
<td>3.873</td>
<td>10.9</td>
<td>38.06</td>
<td>4.922</td>
<td>17.09</td>
<td>38.406</td>
<td>4.74</td>
<td>41.747</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T5</td>
<td>63.09</td>
<td>7.7198</td>
<td>12.95</td>
<td>63.09</td>
<td>7.7198</td>
<td>9.982</td>
<td>67.958</td>
<td>6.79</td>
<td>9.7708</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T6</td>
<td>74.7</td>
<td>3.902</td>
<td>5.0</td>
<td>57.04</td>
<td>8.064</td>
<td>22.077</td>
<td>65.87</td>
<td>8.22</td>
<td>20.7387</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>20.85</td>
<td>1.9096</td>
<td>22.0</td>
<td>19.14</td>
<td>2.4995</td>
<td>13.96</td>
<td>22.146</td>
<td>4.6025</td>
<td>10.5371</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T8</td>
<td>50.97</td>
<td>5.1115</td>
<td>7.0</td>
<td>62.28</td>
<td>6.4363</td>
<td>7.5889</td>
<td>66.565</td>
<td>4.7702</td>
<td>5.7794</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T9</td>
<td>17.62</td>
<td>6.0385</td>
<td>24.65</td>
<td>14.74</td>
<td>1.6029</td>
<td>11.983</td>
<td>15.67</td>
<td>5.3265</td>
<td>19.1745</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T10</td>
<td>40.08</td>
<td>8.909</td>
<td>19.9</td>
<td>19.22</td>
<td>4.2564</td>
<td>22.958</td>
<td>32.278</td>
<td>7.107</td>
<td>31.912</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 4. Stat Sheet

Vs Sheet - average groups variability

<table>
<thead>
<tr>
<th>gr</th>
<th>Count</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Average</td>
<td>10.6</td>
<td>8.7</td>
<td>20.6</td>
<td>0</td>
<td>4.4</td>
<td>7.6</td>
<td>10.3</td>
<td>6</td>
<td>16.1</td>
<td>18.7</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>Average</td>
<td>15.8</td>
<td>9</td>
<td>71.2</td>
<td>13.6</td>
<td>20.9</td>
<td>3.5</td>
<td>24.7</td>
<td>18.2</td>
<td>36.8</td>
<td>27.1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 5. Vs Sheet
Vs graph Sheet - the histogram of results of two group’s comparison of. The number of columns on histograms corresponds to number of ***measurement.xml files on which the analysis was process. Dark blue color shows the data on «Group 1», red - on «Group 2».

![Vs graph Sheet](image)

Fig. 6. Vs graph Sheet

M-S Sheet - the histogram of comparison results of M parameters (the first pair columns) and S (the second pair columns) for all parameters T1-T10. Dark blue color shows the data on «Group 1», red - on «Group 2».

![M-S Sheet](image)

Fig. 7. M-S Sheet
M1-M2 Sheet - the histogram of results of M parameters comparison for all parameters T1-T10. Dark blue color shows the data on «Group 1», red - on «Group 2».

![M1-M2 Sheet](image)

Fig. 8. M1-M2 Sheet

S1-S2 Sheet - the histogram of results of S parameters comparison for all parameters T1-T10. Dark blue color shows the data on «Group 1», red - on «Group 2».

![S1-S2 Sheet](image)

Fig. 9. S1-S2 Sheet
V1-V2 Sheet - the histogram of results of V (variability) parameters comparison for all parameters T1-T10. Dark blue color shows the data on «Group 1», red - on «Group 2». The big differences in graph for two groups testify to the occurred physical deviations between patients of groups.

![Graph](image_url)

Fig. 10. V1-V2Sheet
5. Analysis results

Provided results analysis mostly depends on the research aim. It is often necessary to define parameters - markers of status changes which are significantly differ between two groups. Listing 10 psychophysiological parameters (as emotion 10 print) characterizing various single properties of a person status and a general status of the person, too. Micromovements parameters of person are changed during a deviation of a person status from normal, that shows a deviation of the corresponding vibraimage parameters. The analysis of person reflex micromovements in the biological nature is similar, for example, to the biochemical analysis of person blood which reflects biochemical and energy exchange process in an organism. Only with the help of vibraimage technology the analysis of micromovements is carried out simply, remote, friendly and nonintrusive.

On an example (fig. 10) it is visible, that the most significant distinction is observed between parameters of variability T3, T6 and T9 which should be chosen as the basic markers of status changes for results of the experiment showed in figure. It is natural, that quantity of measurements and test specifications can have influence to the results. It is important to fulfill the main principles of Vibraimage technology in detail enough stated in the Vibraimage PRO Description during providing source measurements.

Below (fig. 11) given sample of test for two different status of one person, the first group of measurements show vibraimage testing of person in active status, the second group of measurements show vibraimage testing of person in drowsiness status. Fig.11 shows a strong difference of vibraimage parameters for person in these different statuses.

![Graph showing compatibility results for status Active (1)- Drowsiness (2)](image)

Fig. 11. List Vs graph. Compatibility results for status Active (1)- Drowsiness (2)
On the Fig 12 given V1-V2 list - results comparison histograms of variability (V) parameters for previous measurements status Active (1) - Drowsiness (2). This histogram indicates what statistics difference of concrete vibraimage parameters divide Active status from Drowsiness status. This is significant difference in variability of T1, T4 and T7 parameters.

So, VibraStat program obviously shows if there are significant difference between two statuses (or groups of people) like on Figs 11-12. Or in other way both groups results could be similar like on Fig. 6.
6. License

VibraStat program presented for open access to all licensed users of program Vibraimage PRO.

Updates and questions on www.elsys.ru
Elsys Corp.
Russia, 194223, Saint-Petersburg, Toreza, 68
ph./fax: +7 (812) 552 67 19
e-mail: minkin@elsys.ru
www.elsys.ru
www.psymaker.com

Copyright 2001-2012 Elsys Corp. All rights reserved.